

 Lua scripting in D-Flow
 Training syllabus

Page 2 of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Page 3 of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

1 Preface
Scripting in D-Flow, which was requested by many customers, largely extends the possibilities of

creating more advance applications.

The ‘Lua scripting in D-Flow training syllabus’ was designed by Motek Medical BV to provide D-

Flow users a brief look at some functionalities of the Script module. This syllabus is not designed

to learn Lua, but to teach the user how to use the Script module. Some experience in line-based

programming is highly recommended.

We hope you enjoy getting to know the Script module in D-Flow.

Regards,

Motek Medical BV

Page - 5 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

2 Contents
1 Preface - 4 -

2 Contents - 5 -

3 The Script module - 6 -

3.1 User interface .. - 7 -

3.1.1 Menu bar (Yellow) .. - 7 -

3.1.2 Script tab (Blue) .. - 7 -

3.1.3 Inputs & Outputs tab (Green) .. - 8 -

3.1.4 Objects tab (Purple) ... - 8 -

3.1.5 Output field (Red) ... - 8 -

3.1.6 Play control section (Orange) .. - 8 -

3.2 Module actions ... - 8 -

3.2.1 Start .. - 8 -

3.2.2 Reset ... - 8 -

3.3 D-Flow related Lua basics .. - 9 -

3.3.1 Value types .. - 9 -

3.3.2 Libraries ... - 10 -

3.3.3 Control structures .. - 11 -

3.4 D-Flow Script structure .. - 11 -

4 Starting tutorials - 13 -

4.1 Using module actions to control a billboard text ... - 13 -

4.2 Create and use a simple function .. - 17 -

5 Additional tutorials - 23 -

5.1 Sending and using metadata ... - 23 -

5.2 Different actions .. - 28 -

5.3 Collision Detection .. - 33 -

5.4 Random with Lua .. - 38 -

6 D-Flow Script function reference - 41 -

7 Appendix: Lua Cheat sheet - 42 -

Page - 6 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

3 The Script module
The Script module is used to write scripts that are part of the D-Flow applications in the scripting

language Lua. The Script module is used when complex logic or behavior of scene objects is

required, which is hard to realize with the standard modules. A few examples when to use the

Script module:

• When a lot of complex mathematical expressions is used for custom motion analysis

algorithms

• To control complex behavior of a lot of objects

• For object animation based on events

Script module Icon

A second advantage of scripting is that one Script module can contain the same functionality as an

entire group of other modules together. In a lot of cases it is possible to create the functionality

with the standard modules, but instead it would be more efficient to create it within a single script.

This saves space in the D-Flow editor and keeps the application clean and orderly. Another

advantage is that some functionality is only available in the Script module and not in the other

modules.

The scripting code is written in the 'Script'-tab. Input and output channels that are defined in the

script are created in the 'Input & Outputs'-tab. Objects that are referred to inside the script, need

to be added to the module (like is done with the collision module). These objects will appear inside

the 'Objects'-tab.

Scripting functionality overview

• Get input values and set output values

• Modify scene object positions, rotation and scaling

• Adjust material settings

• Do collision detection

• Adjust camera and light settings

• React to module actions

• Schedule global events

• Create and delete scene objects

Page - 7 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

3.1 User interface

The user interface of the Script module is similar to other D-Flow modules. It contains 3 tabs, an

output field, Play control buttons and a menu bar.

3.1.1 Menu bar (Yellow)

The menu bar provides several functionalities, such as Import, Export, Edit, Find & Replace, View

and access to the Script function reference.

3.1.2 Script tab (Blue)

The script code is entered here in the text field. Sidebars will appear in case the script becomes

longer or wider than the text field.

The Script module’s user interface.

To help the programmer navigate through the code, the Script module uses:

• Syntax highlighting: display of code in different colors according to the category of terms

• Parenthesis matching: is a syntax highlighting feature that highlights matching sets of

braces and brackets

• Line numbers can be enabled or disabled under View options

• Clear output: Delete the output printed in the Output field

Page - 8 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Syntax highlighting and line numbers

3.1.3 Inputs & Outputs tab (Green)

This section is used to configure the input and output channels of the Script module. The module

has six default channels, but these can be deleted or renamed. Additional channels can be added

too. The script can refer to these input channels in order to retrieve data from these channels.

It is also possible to create in/outputs using the inputs/outputs library. For more information

about the library, please refer to page - 10 - of this manual.

3.1.4 Objects tab (Purple)

This section shows all objects attached to the Script module. Collision detection is enabled on the

Objects tab.

3.1.5 Output field (Red)

This section shows the print statements and errors from the script.

3.1.6 Play control section (Orange)

Controls the module actions: Play, Stop and Reset. These are used for quick testing of your script.

3.2 Module actions

The script has several module actions which it reacts to, either by a fixed reaction or a reaction

specified in the script itself. The ‘Start’ and ‘Reset’ module action are explained below. The

reaction of the ‘Stop’, ‘Stop + Reset’ and the ‘Run Once’ module actions are pretty straightforward.

The reactions of the ‘Calibrate’, ‘Action’ and ‘Custom 1-6’ can be specified within the script.

3.2.1 Start

The script starts to run and keeps running until it is stopped. Once the script starts running the

entire script is carried out each frame. Variables that aren’t declared locally are shared over

frames, i.e. the assigned value stays assigned to that variable.

3.2.2 Reset

The ‘Reset’ module action brings the application back to the state before the script was carried

out. For instance, all created objects are removed.

Page - 9 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

3.3 D-Flow related Lua basics

Lua is a powerful, fast, lightweight, embeddable scripting language created by the Pontifical

Catholic University of Rio de Janeiro in Brazil. It is credited to be fast in processing and easy to

learn.

Although this syllabus is not designed to learn Lua, it will cover some of the basic Lua language.

This is needed to learn how to use the Script module in D-Flow. For more information on Lua

please refer to www.Lua.org and the book “Programming in Lua” (2nd edition or 3rd edition) and

for the reference manual please refer to “Lua 5.2 Reference Manual”.

Programming in Lua (2nd and 3rd edition) Lua 5.2 Reference Manual

3.3.1 Value types

Lua is a dynamically typed language. This means that variables do not have types; only values do.

There are no type definitions in the language. All values carry their own type. The Script module

supports most of the Lua value types: numbers, strings, Booleans, tables, functions and the value

type nil. The types ‘userdata’ and ‘thread’ cannot be used directly in the Script module.

‘Nil’ is the type of the value nil, whose main property is to be different from any other value; it

usually represents the absence of a useful value.

‘Boolean’ is the type of the values false and true. Both nil and false make a condition false; any

other value makes it true.

The value type ‘string’ is used to represent text in Lua and is assigned to the value by using double

quotes, e.g. “This is a string”.

The value type ‘number’ will be assigned to variables with any numerical value, e.g. ‘3’, ‘-8.17’ or

math.pi. Lua does not make a distinction between integers and floats. Expressions in Lua are very

intuitive, as they evaluate to a number.

Page - 10 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

-- a comment

print(“Hello, world!”)

-- expressions are intuitive

a = 10 * 3 + 1

print(a)

b = 10 * 3 + 1.1

print(b)

print(math.pi)

 Hello, world!

31

31.1

3.141592653589

8

Print statements, strings and numbers in Lua

The type ‘table’ implements associative arrays, that is, arrays that can be indexed not only with

numbers, but with any Lua value except nil. Tables are the sole data structuring mechanism in

Lua; they can be used to represent ordinary arrays, sequences, symbol tables, sets, records,

graphs, trees, etc. The type table can be assigned to a value by using braces {}.

-- Assign object settings

objectSettings = {o, {1 , 1.2, -3}, “Cylinder”, true}

-- or

pos = {1 , 1.2, -3}

objectSettings = {o, pos , “Cylinder”, true}

An example of tables in Lua

‘Functions’ are first-class values in Lua. That means that functions can be stored in variables,

passed as arguments to other functions, and returned as results.

-- Calculates the 3D distance between 2 points

function distance3d(point1, point2)

 -- (table, table -> number)

 local delta = {point1[1] - point2[1], point1[2] -point2[2],

 point1[3] - point2[3]}

 return math.sqrt(delta[1] ^ 2 + delta[2] ^ 2 + delta[3] ^ 2)

end

An example of a function in Lua

3.3.2 Libraries

The Script module supports the use of several Lua function libraries. Next to some standard Lua

libraries there are D-Flow specific libraries. All functions from these libraries are described in the

script reference manual (Go to D-Flow Menu Bar/ Help/D-Flow 3 Help/Module Reference/Script/

Script function Reference).

Page - 11 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

The specific D-Flow functions are categorized in three groups, Global functions, input/output

functions and DRS functions. With the use of the DRS functions it is possible to alter the properties

of objects, cameras, lights, materials, 3DGraphs, haptics and physics. All node functions can be

used on all nodes (objects/camera/light) attached to the Script module.

The Script module also supports the use of the following standard Lua libraries: math, string, table,

io and os. Especially the math and table library are helpful when creating scripts in the D-Flow

Script module. The math library comprises a standard set of mathematical functions, such as

random, trigonometric and rounding functions. The table library comprises auxiliary functions to

manipulate tables as arrays. One of its main roles is to give a reasonable meaning for the size of

an array in Lua. It also provides functions to insert and remove elements from lists and to sort the

elements of an array.

3.3.3 Control structures

Lua provides a small and conventional set of control structures, with if for conditional and while,

repeat, and for for iteration. All control structures have an explicit terminator: end terminates the

if, for and while structures; and until terminates the repeat structure.

The condition expression of a control structure may result in any value. Lua treats as true, all

values different from false and nil, e.g. the number 0 is also evaluated to true.

for i = 1,8 do

 print(i)

end

local a = 0

while a < 9 do

 print(a)

 a = a + 1

end

if 0 then

 print("text")

end

 …

6

7

8

1

2

3

4

5

6

7

8

text

Examples of ‘for’, ‘while’ and ‘if’ control structures

3.4 D-Flow Script structure

To assist in getting a script structured, standardized and readable a specific structure is

recommended. The script structure can be divided in five parts; a header, initialization of global

variables, function definitions, initialization code and an update part.

The header contains a description of the script’s functionalities and a version number. This will

make the script share friendly. After the header, all global used variables are initiated by the

standard Lua syntax “variable = variable or initialValue”. This will give an overview of the

variable names used. Hereafter the functions are defined as they must be declared before they are

Page - 12 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

used in the rest of the script. If an external functions file is used, it can be required in this part of

the script structure.

The actual script is written after the definition of the functions used, starting with the initialization

code. As the script runs each frame, an initialization needs to be set up which is only performed

on the first run. The last part of the script is defined as the update. This part of the script has the

handles which must be performed each D-Flow frame. As this is the most extensive part of the

script we recommend splitting it in the following four parts: handling the module actions, getting

the values for input based variables, the actual script logic and setting the values to the output

channels.

--[[-- Script description

 -- Version nr

--]]

-- Initialization of all (not local) variables

ini = ini or 0

-- Function definitions

-- Initialization code

if ini == 0 then

 -- initialization code here

 ini = 1

end

-- Script update (all parts below are part of the script

update)

-- Handling module actions

-- Input based variables

-- Application logic

-- Set Output

The scripting in D-Flow code structure template

Page - 13 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

4 Starting tutorials
The following tutorials give a brief look into the possibilities of the Script module.

4.1 Using module actions to control a billboard text

This example describes how to send text to a billboard using a Script module.

This is just a small piece of scripting code, which does not need the suggested structure in

paragraph 3.4. However, when it is part of a larger script, element 1 of this tutorial should be

positioned at the Script update part, to be more precise, in the part Handling module actions.

Using module actions to control a billboard text

Time estimation: 20-30 min

Goal
Getting familiar with the Lua scripting language and learning about module
actions / event handling in the Script module.

Topics covered in this
tutorial

• Scripting using module actions
• Broadcasting events with metadata
• Setting up a billboard for “text from event”

Modules used in this
tutorial:

Script
This module interacts with the Data flow using
Lua scripting language.

Billboard or 3DText
This module is able to show text and numerals
in the 3D-scenery.

References:
• D-Flow 3 Help/Module Reference/Script/ Script function reference
• Programming in Lua
• D-Flow 3 Help/ module references/Billboard, 3DText module

Preview of the result after completing this tutorial

Element 1: Create the script

Goal In this element, we are going to create a Lua script which
broadcasts an event on a certain module action.

How? The Script module provides the possibility to create scripts. By
line-programming a script, it is possible to send text to a billboard.

Page - 14 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Procedure Explanation

Create a Script module and print to the output

1. Get a Script module
(blue) and open the user
interface.

The Script module interacts with the
Data flow using the Lua script
language.

2. Try to print to the output
window. Type:
print(“Hello,world!”

) and run the script.

Additionally try other statements that
print to the output window, such as
info(), warning(), error(). Note: info/
warnings/ error messages will also
appear as a pop-up in the bottom left
corner of the screen.

Create the Lua script

3. Delete all previously
created script.

4. Create the following ‘if-
statement’:

if

hasaction(“Action”)

then

print(“action test”)

end

You do not have to setup the event
mapping as the global event “Action”
is already mapped to the module
action “Action”

hasaction() returns whether the
passed module action was triggered
during the D-Flow frame.

So: If the script’s module action is
‘Action’ then the text “action test” is
printed in the output field.

5. Try the if statement by
running the script once.

This will show nothing, as the module
action ‘Action’ is not triggered during
the run.

6. Test the script by starting
it (Play) and clicking the
‘Action’ button (blue
star) on the Runtime
console or in the Global
Events.

This will print the text ‘action test’ in
the script’s output field.

7. Create a new global event
called ‘ShowText’.

8. In the script replace

print(“action”)

by

broadcast(“ShowText"

, "Text", "My

billboard text")

The function broadcast (event

[, meta data]), broadcasts the

global event, with attached meta data
if provided. The meta data is passed
by specifying the key, followed by the
value.

This is what happens:

Page - 15 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

If the script’s module action is ‘Action’,
then the global event ‘ShowText’ is
broadcasted.
This event is accompanied by the
metadata of the type ‘Text’ with a
value of ‘My billboard text’.

See additional tutorial 5.1 Sending and
using metadata for more information
about the use of metadata.

9. Try to test the script You will notice that this does not have
any visual effect yet, as there is no
module set to receive the text on
‘ShowText’.

Element 2: Setting up the billboard

Goal In this element, we are going to set up a billboard module to
receive text from the Script module

How? The billboard module provides the possibility to use the text
sent as metadata with an event.

Procedure Explanation

Create a billboard module and adjust the GUI settings

1. Drag a Billboard module
from the modules onto the
D-Flow editor.

2. Open the Billboard’s user
interface.

3. Set the billboard to your
preferred settings.

Tip: type something in the text
field to see how the text appears on
the screen.

4. Check “Use text from event”
on the Text tab.

This setting enables the billboard
to receive text (meta data) along
with an event.

5. Set up the event mapping:

On the global events ‘Play’
and ‘ShowText’ the billboard
should be set to ‘Show’. On
the event ‘Reset’ the
Billboard should be set to
‘Hide’.

Element 3: Test the application

Goal In this element, we are going to test the application and if needed
adjust the billboard settings

How? Running the script.

Page - 16 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Procedure Explanation

Test the application

1. Run the application using the
‘Play’ button in de ‘Global
Events’ section.

This runs the script.
However, no billboard or text
is displayed yet, because the
‘Action’ event is not triggered
yet.

2. Click the ‘Action’ button. This shows the text entered

in the script on the billboard.

Note: If the text does not
show, go to the ‘Text’ tab of
the billboard and set the
refresh rate to ‘0’.

3. If needed, adjust the

billboard settings (e.g.
texture width).

4. Go to the Script module and

change the text
"My billboard text"

in something else.

5. Run the application (Play)
again and click the ‘Action’
button.

Your new text should appear
on the Billboard.

Page - 17 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

4.2 Create and use a simple function

This example describes how you can create a simple path animation function and use it on an

object. Try to place the pieces of code in the correct parts of the Script structure. Please refer to

page - 11 - for an explanation about the script structure.

Element 1: Structure your script using comments

Goal Create a readable script in the Script module

How? Use the Script structure template and the additional comments
from paragraph 1.4 during the creation of each script code
snippet/line

Procedure Explanation

1. First define the
header of your script:

-- Script

description

-- Version nr

The header contains a description of
the script’s functionalities and a
version number.

Using module actions to control a billboard text

Time estimation: 20-30 min

Goal Getting familiar with the Lua scripting language and learning about
functions and controlling an object using the Script module.

Topics covered in this
tutorial

• Scripting using function calls
• Using outputs
• Controlling an object using the Script module

Modules used in this
tutorial:

Script
This module interacts with the
Data flow using Lua scripting
language.

Graph
This module is used for
graphical data display.

References: • D-Flow 3 Help/Module Reference/Script/ Script function reference
• Programming in Lua
• D-Flow 3 Help/ module references/Graph module

Preview of the result after completing this tutorial

Page - 18 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

2. Divide your script

structure in the
recommended parts
(see 1.4 for more
information)

The structure parts;
• The header
• Initialization of global variables
• Function definitions
• Initialization code
• Update part

3. Add additional

comments explaining
your code

e.g. add descriptions and examples to the
functions.

Element 2: Controlling an object using the Script module

Goal In this element, we are going to control the position of an
object.

How? The Script module provides the possibility to control the
settings of an attached object.

Procedure Explanation

Add objects to the Script module

1. Go to ‘Add scene’
(Button or through
scene in the menu).

2. Select Files of type:
“.mesh” and open the
file “Cuestar01”.

Now the mesh “Cuestar01” is added
to the scene explorer.

3. Perform the same steps

for “Cuestar02”.
Also “Cuestar02” is added to the
scene explorer.
Check the position of the cuestars.
They are located in the origin of the
scene.

Using objects in the Script module

4. Get a Script module

5. Unfold the node in the
scene explorer and
drag the 2 cuestars, one
by one, onto the Script
module.

Page - 19 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

6. Check the objects tab of

the Script module
The two objects should be visible on
this tab.

7. On the script tab:

Assign a global variable
containing the first
object using the
following script:

cuestar1 = cuestar1

or objects.get(1)

Here the variable ‘cuestar1’ is
defined.

In this case we define it with the
index ‘1’. This refers to the first object
in the Objects-list.

8. Assign another variable
with the other object,
using the objects name:

cuestar2 = cuestar2

or

objects.get("cuestar

02")

Here the variable ‘cuestar2’ is
defined.

In this case we define it using the
actual name of the object “cuestar02”.
Note: in case of referring to names
you must use string notation (double
quotes). Also the names are case
sensitive.

Both the index and the actual name
could be used to define your object
variable.

9. Test the script to see if
it generates errors by
running it.

It is always good to test your scrip
regularly to see if the script itself
produces errors that stop the script.

Setting the position of objects in the scripting module

10. Initialize the position of
the object using the
following line code:

object.setposition(c

uestar1, 0, 1.5, 0)

Here we set the position of the object
‘cuestar1’.

We use the command
‘object.setposition’. Then we

define the variable ‘cuestar1’, and
then the x, y, and z coordinates.
Notice that the object has moved in
the DRS window.

11. Initialize the position of
the second object using
the following line code:

cuestar2:setposition

(0, 1.5, 0)

Here we set the position of the object
‘cuestar2’.

Notice that we use another code here,
but the actual result is the same.

First the variable ‘cuestar2’, than the
command ‘setposition’ and then the
x,y,z, coordinates.

Page - 20 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Element 3: Creating a Lua function

Goal In this element, we are going to create a Lua function which
we are going to use as path animation (scale) on the cuestar
objects.

How? Using a self-created function call.

Procedure Explanation

Create a simple Lua function

1. Add the following code in
the Script module
(‘Function
definitions’):

function sine(freq,

ampl, offset)

return offset +

ampl * math.sin (2

* math.pi * freq *

frametime())

end

This will create a sine function with
input values for frequency,
amplitude and offset.

Inside a function you can fill
variables or you can return a value.

2. Test your function by
printing the function:

print(sine(1, 2, 3))

Notice that the output field is filled
with numbers.

3. Delete the line:

print(sine(1, 2,

3)) again from the
script.

Actually we do not need this to be
printed in the output field, this was
just a test.

Test your function

4. Get a Graph module. This module is used for graphical
data display.

5. Connect the output of the

Script module to the
input of the Graph
module.

12. Notice that ‘Stop’
followed by ‘Reset’,
resets the objects to the
original state.

Page - 21 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

6. Delete every wire in the

connection editor, except
the first two.

7. Use the created function
as output for the Script
module:

outputs.set(1,

sine(1, 2, 3))

outputs.set(1, sine(1, 2,

3)) tells the module to output the

sine wave on output channel ‘1’
with a frequency of ‘1’, an
amplitude of ‘2’, and an offset of ‘3’.

8. Click play in the Global
events and check the
Graph module

More complex functions

9. Create the following line
code in the Script
module:

function

triwave(period,

phase, ampl, offset)

local t =

(frametime() +

phase) % period

local h = period /

2

if t > h then

t = period - t

end

return t * ampl / h

+ offset

end

Inside loop, if statement, functions,
etc. you can use local variables.

This code creates a triwave. In the
end, you are interested in the
returned value of ‘t * ampl / h +
offset’
Variables ‘t’ and ‘h’ are local
variables and are defined in the
script lines.

10. Try to write a code that
will output the triwave
on channel 2, using the
following parameters:

 Period =1
 Phase = 1
 Ampl = 1
 Offset = 0

11. Test the function using
the Graph module.

The result of your code written in
step 9 is visualized with the green
line.

Element 4: Using the created function as path animation on the objects

Goal In this element, we are going to use the created function as
path animation to set the scaling of the cuestars.

How? Setting the scale of the cuestars with the triwave function.

Procedure Explanation

Page - 22 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Set the scale of the cuestars dynamically

1. Create the following line
code in the Script
module:

s = triwave(1,0,1,1)

object.setscaling(cue

star1, s, s, 1)

object.setscaling(cue

star2, s, s, 1)

2. Run the script and check
the results.

You will notice that the stars start
to grow and shrink.
This is because the cuestar objects
are scaled on x, y, z, with
respectively ‘s’, ‘s’ and ‘1’.
‘s’ in this case is a triwave with a
period of 1, phase of 0, amplitude
of 1, and an offset of 1.

Use simple math to rotate the cues

3. Create the following line
code in the Script
module:

r = 100 *

framedelta()

cuestar1:rotate(0, 0,

r)

cuestar2:rotate(0, 0,

-r)

4. Run the script and check
the results.

You will notice that the stars start
to rotate.
This is because the cuestar objects
are rotated on x, y, z with
respectively ‘0’, ‘0’, ‘r’.
‘r’ is in this case defined as ‘100 *
framedelta()’

framedelta() is a global function
created for d-flow, which returns
the delta time per frame.

Page - 23 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

5 Additional tutorials

5.1 Sending and using metadata

Using module actions to control a billboard text

Time estimation: 20-30 min

Goal This tutorial explains the use of metadata with functions action() and
broadcast().

Modules used in this
tutorial:

Script
This module interacts with the
Data flow using Lua scripting
language

Billboard
This module is able to show text
and numerals in the 3D-scenery.

References: • D-Flow 3 Help/Module Reference/Script/ Script function
reference

• Programming in Lua
• D-Flow 3 Help/ module references/Billboard module

Preview of the result after completing this tutorial

The Script module can take over the transfer of information about positions and texts with

broadcasted events. This information can subsequently be interpreted by other modules like the

Billboard or the Particle Module. This way, for example, only one billboard is needed to display

several different texts, or a Particle (Particle module) can be sent to a certain place based on an

event. Both examples are explained in this tutorial.

Page - 24 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

First some basics: broadcast (“Name”) is a function that broadcasts a global event “Name”. It is

possible to send additional data (metadata) with this event broadcast. This metadata is sent by

specifying a key type (e.g. “Text”) followed by (a) value(s).

Example: broadcast (“Action”,”Position”, 1.0, 2.0, 3.0, “Text”, “Hit!”). This broadcasts the global

event “Action” with positional metadata (x = 1.0, y = 2.0, z = 3.0) and textual metadata (“Hit!”).

Note: this tutorial also uses hasaction(), in case this function is not familiar please refer to the

tutorial “5.2 Different actions” for more information.

Procedure Explanation

1. Go to global events and create two
custom events called; “Start” and
“Hit”

2. Get a Script module & open the
Script module’s user interface

3. Under ‘Initialization of
all variables’, enter the
following code:

init = init or 0

ball = ball or nil

speed = speed or 1

start = start or 0

‘Initialization of all

variables’ is the place where
all global variables are created
before they are used or filled. So
this is the beginning of your
script. This is not mandatory in
Lua, but it will give an overview
of the used variable names.

4. Under ‘Function
definitions’, enter the
following code:

function handleFalling(obj)

local ball = obj

local x =

object.getposition(ball)[1

]

local y =

object.getposition(ball)[2

]

y = y – speed *

framedelta()

object.setposition(ball,

x, y, 0)

return ball

end

This function will handle the
dropping of the ball that we are
going to create next. ‘Function
definitions’is the place for
all the custom function
definitions.

Element 1: Creating the application

Goal This tutorial explains the use of metadata with functions action()
and broadcast().

How? Create an application where a ball drops from a certain height
and create a billboard to display the start and the moment the
ball hits the ground.

Page - 25 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

5. Under ‘Initialization code’,

enter the following code:
if init == 0 then

ball =

object.create(“Sphere”,

“White”)

object.setposition(ball, 0,

4, 0)

init = 1

end

The ‘Initialization code’

of the script, in which the scene
is set up and the script is made
ready to start, should be written
below the functions, because
often functions are used during
initialization. In this case we
create a white sphere with
position y = 4.

6. Finally under ‘Script Update’,
enter the following code:

if hasaction(“Action”) then

broadcast(“Start”,“Text”,

“Start!”)

start = 1

end

if start == 1 then

handleFalling(ball)

end

‘Script Update’ is the part
that is used to: handle
application logic, update the
scene and update output values.

7. Start the application (Play)

Nothing should happen so far.

8. Click the Action button in the
global events window.

Notice the ball slowly dropping.

The first part of the update checks whether the event “Action” has occurred during the current frame. If
so, the event “Start” is broadcast with the metadata “Start!” (in the form of text). The value for the
variable “start” is set to 1. The second part of the update checks whether the variable “start” is 1. When
the value is ‘1’, the ball will fall.

Element 2: Creating billboard feedback

Goal To display the billboard texts for the start when it is at y = 0.5. This can be done with and
without the use of metadata.

How? 1. Without the use of metadata, two billboard modules would be required. Input the
text in the billboards, set their event-mapping to “Start” and “End” and make the
script broadcast these events based on the height of the ball.

2. With the use metadata, only one billboard module is needed. The script will
broadcast the events based on the height of the ball. The events are accompanied by
metadata in the form of text that is displayed by the receiving billboard.

Create 1 billboard module with the use of metadata

1. Get a Billboard module Open the Billboard user
interface and set the billboard
to your preferred settings.

2. Check ‘Use text from event’ in the
‘Text’ tab.

This setting enables the
billboard to receive text along
with an event.

3. Set up the event mapping: On the

global events both ‘Start’ and ‘Hit’
the billboard should ‘Show’.

.

Page - 26 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

4. Go to the appearance tab and set

Auto-hide [s] to 1 second and close
the Billboard module.

5. Start the entire application.

Nothing happens.

6. Click the ‘Action’ button in the
global events window.

Notice the ball drops and the
text “Start!” appears.

7. Open the Script module and enter
the following in the ‘Update’ part
of the script:

if object.getposition(ball)

[2] < 0.5 then

broadcast(“Hit”,“Text”,

“Hit!”)

end

This tells the script to
broadcast the event “Hit” when
the ball is lower than y = 0.5.
The metadata “Hit!” will be
passed along, as key type text.

8. Reset the application and press
‘Play”.

9. Click the Action button in the global
events window.

Notice first the text “Start!” is
shown and when the ball is
below 0.5 the text “Hit!” is
shown.

Explode the ball and make it reappear at a random position at the top of the screen

10. Go to Script module.

There are two options to
destroy the ball.
1. Hide the ball and create a
new ball at the original
position.
2. Give the already existing ball
a new, random, position.
Option 2 is explained in this
tutorial.

11. Go to the ‘Update’ part and
change the if-statement for
checking the height of the ball into:

if

object.getposition(ball)[2] <

0.5 then broadcast(“Hit”,

“Text”, “Hit!”)

setRandomPos(ball)

end

12. Add the following code to the
‘Function definitions’ part:

function setRandomPos(obj)

local ball = obj

local x = math.random(-2,2)

local y = 4

object.setposition(ball,x,y

,0)

return ball

end

This sets the ball at a random
x-position between -2 and 2 at
a whole number {-2, -1, 0, 1, 2}.
For more information about
Lua’s random functionality,
please refer to the tutorial 5.4 ‘
Random with Lua’.

13. Reset and play the application Notice the ball is sent back to
the top as soon as it hits the
ground

Explosion of the ball: use the partial module

Page - 27 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

14. Go to the Script module and change

the ‘Script update’, add the
following to the body of the if-
statement to check the height of the
ball:

createBang(ball)

Make sure this function is
inserted above the
setRandomPos() function
because this will influence the
position of the fireworks.

15. Go to ‘Function definitions’
part and add the following code:

function createBang(obj)

local ball = obj

local x =

object.getposition(ball)[1]

local y =

object.getposition(ball)[2]

broadcast(“Bang”,

“Position”, x,y,0)

end

This will broadcast the global
event ‘Bang’ with the
positional metadata x, y and z
(0)

16. Go to global events and click “Create
new event”

Enter “Bang” and Click OK.

17. Create a Particle module Go to the event mapping of the
particle module and set the
global events ‘Play’ to ‘None’
and ‘Bang’ to ‘Play’.

18. Open the Particle module and select

the effect ‘Fireworks’. Close the
Particle module.

19. Reset and play the application. .

20. Click Action Notice the Ball starts to drop,
creates fireworks when it
reaches the bottom, and is
moved back to the top.

Tip! There are also other ways to use metadata, for instance when using the Pointer module.

Page - 28 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

5.2 Different actions

Using different module actions in the Script module

Time estimation: 20-30 min

Goal In this tutorial, the use of the different functions as action(), actions() and
hasaction() is explained.

Modules used in this
tutorial:

Script
This module interacts with the data flow using
Lua scripting language

Billboard
This module is able to show text and numerals in
the 3D-scenery.

Stopwatch
This module displays a time counter on a
stopwatch and is able to output the time as a
value.

References: • D-Flow 3 Help/Module Reference/Script/ Script function reference
• Programming in Lua
• D-Flow 3 Help/ module references/Stopwatch module

D-Flow contains several global events by default like; ‘Calibrate’, ‘Reset’ or ‘Action’. It is also

possible to create new custom global events by clicking the ‘Create new event’-button in the

‘Global Events’ section. These global events are broadcast by the following modules: Collision,

Controller, Event, Pointer3D, Random, Stopwatch, or by the Script module itself. By using event

mapping these global events can be linked to the module actions of the Script module.

Preview of the result after completing this tutorial

Page - 29 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Events and actions can also carry so called metadata, which can be positional or textual

information that comes with the text and can be used by other modules like the Billboard. For

more information about metadata please refer to the tutorial “5.1 Sending and using metadata”.

The Script module uses three different functions that handle actions:

action(i)

Returns the name of the action in the action list at position “i”. If no argument is given, the

function will return the first action from the action list.

actions()

Returns the number of actions in the action list, for the current frame.

hasaction(“action name”)

Returns whether the Script module action “action name” has occurred in this frame (true or

false).

Procedure Explanation

1. Go to the ‘Global Events’
section and create a new
event called ‘Display’.

2. Create a Stopwatch module.

3. Open the Stopwatch module.
Enable ‘Trigger event’, at
time ‘3’ seconds, and Event
‘Action’.

Once this stopwatch is started, it
will broadcast the ‘Action’ event
after 3 seconds.

4. Create a Script module

and add the following
code:

if action() == "Action"

then

broadcast

("Display","Text","Disp

lay!")

end

This line states that when the
first module action in the
action list is ‘Action’ then the
global event ‘Display’ will be
triggered, accompanied by
the text: “Display!”.

5. Create a Billboard module.
Check the ‘Use text from
event'-box.

Element 1: The use of different actions

Goal To learn how use a global event to execute a section of a script, based on the function
action().

How? By displaying a text on a billboard when a certain module action in the Script module is
triggered.

Page - 30 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

6. On the appearance tab, set

‘Auto-hide’ after 1 second.

7. Go to event mapping of the
Billboard module. Set the
global event ‘Display’ to the
module action ‘Show’ and
click ‘OK’.

8. Go to the ‘Global Events’
section and press the
‘Play’ button.

This will start the Stopwatch
and the Script. After 3 seconds
the Stopwatch will broadcast
‘Action’, thereby triggering the
Script to broadcast the global
event ‘Display’ and this is
received by the Billboard, which
displays the text ‘Display’.

Element 2: Double events

Goal To learn how to handle multiple module actions with the script module, based on
the actions() and has action() functions.

How? By triggering the Script module with two module actions that are send
simultaneously.

Procedure Explanation

1. Go to global events and
create a new event called:
‘Extra’.

2. Copy the existing
Stopwatch module and
open it. Set trigger event
to ‘Extra’ and close the
Stopwatch.

3. Go to Event Mapping of
the Script module. Set the
global event ‘Extra’ to:
‘Custom 1’ and click ‘OK’.

4. Open the Script module and
change if action() ==

"Action" into:

if action() == "Custom

1"

5. Go to the ‘Global Events’
section press ‘Reset’ and
‘Play’.

Notice that after 3 seconds no
Billboard appears. This is
because both events “Action”
and “Extra” are triggered
simultaneously by the two
Stopwatch modules. This means
that both module actions
‘Action’ and ‘Custom 1’ are in
the action-list. Since action()

Page - 31 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

only checks the first entry in the
action-list, which in this case is
‘Action’ and not ‘Custom 1’, the if
statement is false and therefore
the global event ‘Display’ is not
broadcast.

Using actions(): to check whether both events are triggered correctly

6. Open the Script module
and add the following:

if actions() ~=0 then

print(actions())

end

This script returns the number
of actions in the action list, but
only when the number of actions
in the action-list is not equal to
zero. (~= is ‘unequal to’)

7. Go to global events and
press ‘Reset’ and ‘Play’.

Notice that the ‘Output’ window
in the Script module first
displays a ‘1’, which represents
the ‘Play’ event and after 3
seconds it displays a ‘2’, which
are the events for both
Stopwatch modules. This checks
whether the events were
broadcasted correctly.

Using action(i)

8. Open the Script module
and change if action()
== "Custom 1" into:

if action(2) ==

"Custom 1"

9. Go to the ‘Global Events’
section and press ‘Reset’
and ‘Play’.

Notice the text is displayed now
because action(2) checks the
second entry of the action-list
and not the first one.

This is however a temporary fix,
because it means that each time
the Script module receives
multiple events this number “i”
needs to be correct, and with
larger applications it is not
always the same.

Using hasaction(“Name”)

10. Open the Script module
and change if
action(2) == "Custom

1" into:

if

hasaction(“Custom

1”)

11. Go to the ‘Global Events’
section and press ‘Reset’
and ‘Play’.

The text is displayed.
hasaction() checks whether the
event is somewhere in the
action-list, indifferent of its
location. This means that for

Page - 32 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

larger applications hasaction()
often is a safer choice, since it
does not depend on the amount
of actions that are received.

Using a loop for actions

12. To create a loop for all
actions change:

if hasaction("Custom

1") then

broadcast

("Display","Text","Di

splay!")

end

into:

for i = 1,

actions() do

if action(i) ==

"Custom 1" then

broadcast("Display

","Text",

"Display!")

end

end

This for-loop checks for each
entry in the action-list (from 1 to
actions()), whether that entry is
“Custom 1”. If not, it goes to the
next entry. If true, then it will
broadcast.

13. Go to the ‘Global Events’
and press ‘Reset’ and
‘Play’.

Page - 33 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

5.3 Collision Detection

Use collision detection of objects

Time estimation: 20-30 min

Goal In this tutorial is explained how to use collision detection of objects created inside and
outside the Script module

Modules
used in this
tutorial:

Script
This module interacts with the Data flow using Lua scripting language

Valuator
This module has a number of sliders with a predetermined range which
can be changed during runtime. This module is helpful to simulate output
in the testing phase of application creation.

References: • D-Flow 3 Help/Module Reference/Script/ Script function reference
• Programming in Lua
• D-Flow 3 Help/ module references/Valuator module

Prieview of the result after completing this tutorial

The Script module is able to detect collisions between objects and obtain data from it. Collisions

are both possible between internal objects as well as between internal and external objects.

Internal objects are objects created within the Script module. External objects are objects add to

the scene explorer and dragged onto the Script module.

Additionally the use of the data that is produced by each collision is explained. With each collision

three types of data are generated: an objects-list (the objects involved in the collision), a position-

list (the positions of the colliding objects), and a normal-list (a list of all collision normals*).

 *Normal: a perpendicular line to the impact of both objects that can be used to i.e. determine the angle of

impact and angle of reflection.

Element 1: Creating the application

Goal In this tutorial is explained how to use collision detection of
objects created inside and outside the Script module

How? This tutorial shows how to handle collisions of both internal
and external objects.

Page - 34 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Procedure Explanation

1. Get a Script module and
enter the following into the
script:

-- Initialization of

all (not local)

variables

init = init or 0

MoveScale = MoveScale

or 5

-- Initialization code

if init == 0 then

target1 =

object.create(“Sphere”,

“Green”)

object.setposition(targ

et1, 0, 4, 0)

target2 =

object.create(“Sphere”,

“Green”)

object.setposition(targ

e

t2, 2, 3, 0)

hitter =

object.create(“Cone”,

“White”)

object.setscaling(hitte

r, 0.5, 0.5, 0.5)

init = 1

end

The green headers display a
basic setup in which Scripts
can be created to ensure a
better overview when creating
larger scripts.

The “initialization” part creates
the objects when the script
runs for the first time.

2. Create a Valuator module.
3. Connect the Valuator to the

Script.
Parameter 1 of the Valuator
module is automatically linked
to input 1 of the Script module.

4. Open the Script module and
add the following code to
‘Update script’ part:

handleHitter()

5. Add the following code to
the ‘Function
definitions’ part:

function handleHitter()

local x =

inputs.get(1) *

MoveScale

local y =

inputs.get(2) * -

MoveScale

object.setposition(hitt

er,x,y,0)

end

The data from the valuator is
connected to the white cone.
For more information about
the use of inputs, please refer
to the ‘Script function
reference’ (Script module >
Help > Function Reference).

Page - 35 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

6. Go to ‘Global Events’ section

and press ‘Play’.

7. Open the Valuator module
and go to the 2D Value tab.

Notice that you can move the
cone

Element 2: Detect internal collisions

Goal To detect a collision between two objects and destroy the target.

How? Destroy a target is only possible for internal objects, i.e. objects created within
the Script module.

Procedure Explanation

1. Add the following code to
“Script update” part of the
script:

handleCollisions(hitter

)

2. Add the following code to
the ‘Function
definitions’ part:

function

handleCollisions()

local obj

local pos

local norm

obj, pos, norm =

object.collisions(hitte

r)

-- if there is a collision

if obj[1] then

object.destroy(obj[1])

end

end

The data (objects list, position
list and normal list) obtained
at the moment of a collision is
stored in the variables ‘obj’,
‘pos’, and ‘norm’.

The if-statement looks
whether obj[1] exists, i.e. is
not nil (if it is not nil, there
has been a collision). If yes,
then the first object in the
collision-list (the target), is
destroyed.

3. Go to the Objects-tab of the
Script module and check the
‘collision detection’-box.

4. Go to ‘Global Events’ section

and press ‘Play’.

5. Go to the Valuator module.
Move the white cone over
the green balls and notice
the green balls disappear
upon collision.

Using data from the collision

6. In the “function handle
Collision()change:

Fireworks should start when
the object disappears.

Page - 36 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

--if there is a collision

if obj[1] then

object.destroy(obj[1])

-- obtain (unpack the

table content) and

broadcast position

local x =

unpack(pos)[1]

local y =

unpack(pos)[2]

local z =

unpack(pos)[3]

broadcast(“Action”,

“Position”,x,y,z)

end

Therefore the positional
information of the destroyed
object needs to be obtained
and send that to a Particle
module, in order to show the
fireworks at the right
location.

The “pos” is a table containing positional data of all collisions and there can be more at the
same time. In this case there is only one, so unpacking “pos” gives a table with three values, of
which the first one is set to ‘x’. The information is broadcasted as metadata with the global
event “Action”. For more information on metadata go to the tutorial 3.1 “Scripting: Sending
and using metadata”.
7. Create a Particle module.

8. Open Event mapping and
set the global events ‘Play’
to ‘None’ and ‘Action’ to
‘Play’.

9. Open the Particle module

and set the effect to
‘Firework’.

10. Go to the ‘Global Events’

section and press ‘Play’.

Move the white cone and
notice the fireworks when the
balls are hit.

Detecting collisions with external objects

11. Go to Scene > Add object >
Name: Ball > Sphere > OK.

12. Drag the Ball from the Scene
Explorer onto the Script
module.

For collision detection with
external objects, you must
manually add these external
objects to the Script module.
Some object functions, like
‘object.destroy()’ are not
applicable on external
objects, because the object is
not handled in this script.

13. Reset and Play the Script
module.

Page - 37 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

14. Go to the Objects-tab of the

Script module and notice it
looks like this.

The ‘Name’ column displays
the name of the external
objects. Internal objects are
not named, for they are
handled inside the Script.

15. Now add the Ball into the
script so it can be handled.
Add to the ‘Initialization’
part:

ball = objects.get(1)

objects.get() gets the first
object from the list.

16. Reset and Play the
application.

17. Open the Valuator and try to
hit the objects.

Notice that the application
stops after hitting the red
ball. This is because the script
tries to destroy the object
involved in the collision, but
has no authority to do so. To
solve this problem, change
the if-statement.

18. Change the if-statement in
the function
handleCollisions():

-- if there is a collision

if obj[1] then

if

object.isinternal(ob

j[1]) then

object.destroy

(obj[1])

else

object.hide(ob

j[1])

object.setposi

tion(obj[1],0,

0,0)

end

end

The function object.isinternal
checks whether the colliding
object is internal. If not, the
object is hidden and send
towards the origin (0,0,0).
However, this does not
remove the object, so when
the white cone is now moved
towards the origin, collisions
can still be made although the
object is hidden.
This method of hiding
external scene objects might
be useful when in loading and
initializing scenes.

Assignment:
Can you think of a solution to avoid collisions with the hidden ball object?
Another if statement in the ‘handleCollisions()’ function maybe?

Page - 38 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

5.4 Random with Lua

Using random functions in Lua

Time estimation: 20-30 min

Goal This tutorial shows examples of how to use random() functions in Lua.

Modules
used in this
tutorial:

Script
This module interacts with the data flow using Lua scripting language.

Valuator
This module has a number of sliders with a predetermined range which
can be changed during runtime. This module is helpful to simulate output
in the testing phase of application creation.

References: • D-Flow 3 Help/Module Reference/Script/ Script function reference
• Programming in Lua
• D-Flow 3 Help/ module references/Valuator module

Lua’s own function library contains the function math.random(n,m). This function returns a

random value between ‘n’ and ‘m’. When no values are inputted and only math.random() is given,

the function returns random numbers between 0 and 1, with +10 decimals. When only one

number is inputted, e.g. math.random(6), then the function returns numbers between 0 and 6,

without any decimals. The same goes for when two numbers are inputted, e.g.

math.random(80,90), then the function returns numbers between 80 and 90, without any

decimals.

Procedure Explanation

Preview of the result after completing this tutorial

Element 1: Using random functions in Lua

Goal This tutorial shows examples of how to use random() functions in
Lua.

How? To use the random function in general with math.random and how

it can be used to set the position of objects.

Page - 39 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

1. Create a Script module. Under

‘Initialization of all

variables’, enter the following
code:

init = init or 0

ball = ball or nil

speed = speed or 1

2. Under ‘Initialization code’
enter the following code:

if init ~= 1 then

ball =

object.create("Sphere","

Green")

object.setscaling(ball,

0.5, 0.5, 0.5)

object.setposition(ball,

0, 3,0)

speed = 1

init = 1

end

A spherical object is
created with scaling
‘0.5’ and y at ‘3’.

3. Under ‘Function
definitions’, enter the following
code:

function handleFall(obj)

local o = obj

local pos =

object.getposition(o)

pos[2] = pos[2] - speed *

framedelta()

object.setposition(o,{unpac

k(pos)})

end

This function will
handle the falling of the
object.
object.getpositio

n(o) returns a table
with three values {x, y,
z}.
pos[2] calls the
second value of the
table, in other words,
the y-position.

4. Under ‘Script update’ enter the
following code:

if hasaction("Action") then

fall = 1

end

5. Under ‘Script update’ enter the
following code:

if fall == 1 then

handleFall(ball)

end

6. Go to the ‘Global Events’ section and
press ‘Reset’ and ‘Play’. Now press
‘Action’.

Notice that the ball
starts to drop, and
keeps going.

7. Stop and Reset the application.

8. In the script, add the following
function:

When the ball gets
below y = 0 it is
returned to the top

Page - 40 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

function checkHeight(obj)

local o = obj

local pos =

object.getposition(o)

if pos[2] < 0 then

local x =

math.random(-2,2)

local y =

math.random(2,3)

local z = 0

local s =

math.random()

object.setposition

(o,x,y,z)

object.setscaling

(o,s,s,s)

end

end

with a random position
and scaling.
The new ‘x’ will be one
of the following
numbers: {-2, -1, 0, 1,
2}.
The new ‘y’ will be
either 2 or 3.
The new scaling will be
any number between 0
and 1, with 10
decimals.

9. Add the following to the if fall
== 1 statement:

checkHeight(ball)

This call is needed to
actually execute the
‘checkHeight()’
function.

10. Change local x =

math.random(-2,2) in to:

local x = math.random(-200,

200) /100

The x position of the
green ball is desired to
be between -2 and 2,
with 2 decimals.
In this random
function, the x-value
will return random
numbers between -200
and 200. Afterwards
they are divided by
100. This means that a
random number, like
165, will become 1.65.

11. Go to the ‘Global Events’ section
and press ‘Play’ and ‘Action’.

Notice that the ball
starts to drop, but
restarts at a new
location after it reaches
the grid. The ball also
changes size every
time it drops.

Page - 41 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

6 D-Flow Script function reference

For the most up-to-date function reference please refer to the Script function reference section of

the D-Flow reference manual. This Script function reference is updated till D-Flow version 3.16.0.

This document describes Lua functions provided by the Script module.

For the standard Lua functions, consult the Lua reference manual (www.Lua.org/manual/5.2).

Page - 42 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

7 Appendix: Lua Cheat sheet

Lua Core Language

Reserved words

and break do else elseif end false

for function if in local nil not or repeat

 return then true until while

Other reserved strings

+ - * / % ^

 # == ~= <= >= <

 > = () { } [] ; :

 , . .. …

Identifiers

Any string of letters, digits and underscores not starting

with a digit and not a reserved word. Identifiers starting

with underscore and uppercase letter are reserved.

Comments

-- Comment to end of line.

--[[...]] Multi-line comment (commonly --[[to --]])

#! At start of first line for Linux executable.

Strings and escape sequences

' ' " " [[]] [=[]=]

string delimiters; [[]] can be multi-line, escape

sequences ignored. If [=[]=] number of =ʼs must balance.

\a - bell \b - backspace \f - form feed

\n - newline \r - return \t - tab

\v - vert. tab \\ - backslash \" - double quote

\' - single quote \[- square bracket \] - square bracket

\ddd (character represented decimal number).

Types

Type belongs to the value, NOT the variable:

boolean nil and false count as false, all other

 true including 0 and null string. Use

 type(x) to discover type of x.

number 64 bit IEEE floating point

string Can include zero, internally hashed.

table Index by numbers, strings

function Can return multiple values

thread A cooperative coroutine.

userdata C pointer to a C object. Can be

 assigned a metatable to allow use

 like a table or function

nil A special value meaning “nothing”.

Operators in precedence order

^ (right-associative, math lib required)

not # (length) –(unary negative)(unary positive

 illegal)

* / %

+ –

.. (string concatenation, right-associative)

< > <= >= ~= ==

and (stops on false or nil, returns last evaluated

 value)

or (stops on true (not false or nil), returns last
 evaluated value)

The basic library

require (module)

Tries to load a module (.Lua or .dll) from the

application folder or scripts folder.

Information and conversion

type (x)

Returns type of x as string e.g. "nil", "string",

“number”.

tostring (x)

Converts x to a string, using table's metatable's

__tostring if available.

tonumber (x [, b])

Converts string x representing a number in base b

[2..36, default: 10] to a number, or nil if invalid; for

base 10 accepts full format (e.g. "1.5e6").

unpack (t)

Returns t [1]..t [n] as separate values, where n = #t.

Iterators

ipairs (t)

Returns an iterator getting index, value pairs of

array t in numeric order.

pairs (t)

Returns an iterator getting key, value pairs of table

t in no particular order.

next (t [, index])

Returns next index-value pair (nil when finished)
from index (default nil, i.e. beginning) of table t.

The Math Library The Table Library

Page - 43 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Basic operations

math.abs (x) Returns the absolute value of x.

math.fmod (x, y) Returns the remainder of x / y as

 a rounded down integer, for y ~= 0.

math.floor (x) Returns x rounded down to

 integer.

math.ceil (x) Returns x rounded up to the

 nearest integer.

math.min(args) Returns minimum value from args

math.max(args) Returns maximum value from args.

math.huge Returns largest represented number

math.modf (x) Returns integer AND fractional

 parts of x

Exponential and logarithmic

math.sqrt (x) Returns square root of x, for x >= 0.

math.pow (x, y) Returns x raised to the power of y,

 i.e. x^y; if x < 0, y must be integer.

math.exp (x) Returns e to the power of x, i.e. e^x.

math.log (x) Returns natural logarithm of x, for

 x >= 0.

math.log10 (x) Returns base-10 log of x, for x >= 0.

math.frexp (x) If x = m2e, returns m (0, 0.5-1) and

 Integer e

math.ldexp (x, y) Returns x2y with y an integer.

Trigonometrical

math.deg (a) Converts angle a from radians to

 degrees.

math.rad (a) Converts angle a from degrees to

 radians.

math.pi Constant containing the value of Pi.

math.sin (a) Sine of angle a in radians.

math.cos (a) Cosine of angle a in radians.

math.tan (a) Tangent of angle a in radians.

math.asin (x) Arc sine of x in radians, for x in [-

 1, 1].

math.acos (x) Arc cosine of x in radians, for x in

 [-1, 1].

math.atan (x) Arc tangent of x in radians.

Pseudo-random numbers

math.random ([n [, m])

 Pseudo-random number in range [0,

 1], [1, n] or [n, m].

math.randomseed (n)

 Sets a seed n for random sequence.

Tables as arrays (lists)

table.insert (table, [i,] v)

Inserts v at numerical index i [default: after the end]

in table, increments table size.

table.remove (table [, i])

Removes element at numerical index i [default: last

element] from table, decrements table size, returns

removed element.

table.maxn (table)

Returns largest positive numeric index of table.

Slow.

table.sort (table [, cf])

Sorts (in-place) elements from table[1] to table[#t
], using compare function cf (e1, e2) [default: '<'].
May swap equals.

table.concat (table [, string [, i [, j]]])

Returns a single string made by concatenating table

elements table[i] to table[j] (default: i =1, j = table

length)separated by string (default = nil). Returns

empty string if no given elements or i > j

Iterating on table contents

Use the pairs or ipairs iterators in a for-loop. Example:

for k, v in pairs(table) do print (k, v) end

will print the key (k) and value (v) of the entire table's
content.

The String Library

Basic operations

String indices start from 1. Negative indices from end of

string so -1 is last element of string. String element

values 0-255.

string.len (string)

Returns length of string, including embedded

zeroes.

string.sub (string, i [, j])

Returns substring of string from position i to j

[default: -1 which is to end].

string.rep (string, n)

Returns a string of n concatenated copies of string.

string.upper (string)

Returns a copy of string converted to uppercase.

string.lower (string)

Returns a copy of string converted to lowercase.

string.reverse (string)

Returns a string that is the reverse of string.

Page - 44 - of 44

D-Flow Scripting Tutorials.docx/ 20190622 / Printed: 20190622
Printed copies are uncontrolled. Consult DMS for up-to-date versions.

 Form: MFL-05f011 / 20160808

Hogehilweg 18-C | 1101 CD | Amsterdam | The Netherlands

T: +31(0)20 301 30 20 | F: +31(0)20 301 30 21 | www.motekforcelink.com

